The total amount of solid particles as a parameter influencing the viscosity and the foaming properties of the slag was investigated. In this context, the amount of these particles for different process conditions was quantified. In addition, the effect of the process conditions on the total amount of the particles was studied. More specifically, some parameter studies were carried out in oder to determine the influence of chromium oxide (Cr2O3) content, calcium oxide (CaO) content, basicity and temperature on the total amount of solid particles. The interactions between the process conditions were also taken into account.

P91 steel is also known as modified 9Cr-1Mo (P91) steel is widely used as a structural material in the construction of power plant components. In high-Cr ferritic steels, toughness degradation in welds was caused by the presence of δ-ferrite phase in the martensite matrix. The δ-ferrite phase formation is influenced by factors such as chemical composition of welds, Creq and Nieq , heat input used during welding. As the δ-ferrite phase content increases there was reduction in toughness of welds below the specified requirement of 47 Joules as per the standard EN1557: 1997. The poor toughness of welds having δ-ferrite phase can be improved by prolonging the PWHT duration at 760°C. Flux system of consumables also influences the toughness of welds. Basic flux system produces welds having higher toughness than acidic flux system. This is due to microinclusion content of welds. The flux basicity, V and Nb content, and ferrite factor are interrelated and presented as a line diagram. The present study discusses about the role of chemical composition, and welding processes (SMAW and FCAW) on the formation of δ-ferrite phase in welds and its influence on toughness of welds.

Rare earths (RE) have been used to improve the high temperature oxidation resistance of low alloy steel containing elements like Cr, Al, V and Mo. Further, the RE can be added either to the alloy or by applying as an oxide coating to the alloy surface. In this study the high temperature oxidation resistance of rare earth (RE) oxide coated 1Cr-0.3Mo-0.25V alloy was determined. This paper presents the influence of surface additions of nano-crystalline oxides CeO2 on the isothermal oxidation behavior of 1Cr-0.3Mo-0.25V alloys at temperatures ranging from 600 °C to 900 °C. The oxidation rate of RE oxide coated1Cr-0.3Mo-0.25V was significantly lower than that of the uncoated alloy. The improvements in oxidation resistance are the reduced oxidation rates and the increased oxide scale adhesion. Scanning electron microscopy (SEM), X-ray diffractometry (XRD), and electron probe micro analyzer (EPMA) were employed for these analyses. The scale formed in the presence of RE oxides was very thin, fine grained and adherent.

Incremental forging processes like radial forging become more and more crucial in industry due to their outstanding economic performance, their high flexibility and their advantageous compressive stress states. However, nowadays a basic method to analyze forging processes, FEM simulation is still a very time consuming procedure and needs complex models to implement incremental processes. Especially long term studies with focus on tool temperature development during several hours of production cannot be performed with classical FEM models for radial forging. The main problem in modelling is the high operating frequency of the forging devices, which leads to small necessary time steps and, therefore, to inacceptable calculation time due to numerous simulations that have to be run to complete a cogging process sequence. Steady state in die temperature is often only reached after processing several workpieces. Hence, it is necessary to use a simplified FE-model of the forging process to predict the steady state temperature of the forging dies. In the present work a simplified FE-model is established to investigate the steady state temperature of the dies. This approach is verified by metallographic studies proving its accuracy.

High-manganese steels are characterized by high ductility, strength and work hardening resulting from the formation of strain induced martensite (TRIP-effect) or twins (TWIP-effect). A third type is shear band induced plasticity (SIP) in Triplex steels. The Mn-content ranges from 15 to 30 %. Mn and additions of C, Si and Al exert a strong influence on the microstructure and the deformation mechanism and can accordingly affect both strength and ductility. The max. carbon content can be around 1.2 %. The main interest is currently concentrating on TWIP steels. Production of these grades via the conventional steelmaking routes can raise problems and, therefore, modifications and/or alternative production methods have to be applied. With respect to their extreme strength levels, high-Mn steels exhibit an extraordinary forming potential. Welding involves some specific challenges. The possible occurrence of delayed fracture is discussed. High-Mn steels have to compete with other lower alloy steels and special stainless grades with the same objective targets. Referring to this, the laboratory and industrial trials are to be continued in order to fully exploit the considerable market potential of the new steels.

news in steel

Rolling mill orders from AEMZ and NPZ

Two new High-productivity, High-quality and High-efficiency H3 rolling mills will be installed and put into operation in Russia during 2020.

SMS group to modernize gas cleaning systems at POSCO Gwangyang

SMS group, in cooperation with AERIX Co., Ltd., South Korea, has been commissioned to modernize the gas cleaning systems of the three BOF (Blast Oxygen Furnace) converters at the integrated steel mill of POSCO in Gwangyang, South Korea.

New opportunities for customers in Central and Eastern Europe

SSAB is providing new processing opportunities for customers to explore, with a laser cutting machine and state-of-the-art press brake featuring a patent pending bending technology. The new machines were presented during a unique event at the SSAB steel service center in Oborniki, Poland.

Aceros Arequipa orders steel mill and continuous billet caster

Corporación Aceros Arequipa S.A. (CAASA), based in Arequipa, Peru, has awarded SMS group an order covering the supply of mechatronic equipment for a new steel mill and a billet caster with six strands for its Pisco site.