P91 steel is also known as modified 9Cr-1Mo (P91) steel is widely used as a structural material in the construction of power plant components. In high-Cr ferritic steels, toughness degradation in welds was caused by the presence of δ-ferrite phase in the martensite matrix. The δ-ferrite phase formation is influenced by factors such as chemical composition of welds, Creq and Nieq , heat input used during welding. As the δ-ferrite phase content increases there was reduction in toughness of welds below the specified requirement of 47 Joules as per the standard EN1557: 1997. The poor toughness of welds having δ-ferrite phase can be improved by prolonging the PWHT duration at 760°C. Flux system of consumables also influences the toughness of welds. Basic flux system produces welds having higher toughness than acidic flux system. This is due to microinclusion content of welds. The flux basicity, V and Nb content, and ferrite factor are interrelated and presented as a line diagram. The present study discusses about the role of chemical composition, and welding processes (SMAW and FCAW) on the formation of δ-ferrite phase in welds and its influence on toughness of welds.

Please login / register to post comments

Star InactiveStar InactiveStar InactiveStar InactiveStar Inactive