The influence of solution annealing heat treatment on the microstructure and hardness of Hadfield steel containing up to 3.16% chromium and 0.15% nitrogen was investigated.
Furthermore, the effects of chromium additions on the hardness and microstructure of austenitic manganese steels in the as-cast and heat-treated conditions have been studied. The true stress-true strain response of nitrogen alloyed austenitic manganese steel with chromium additions in the as-cast and heat treated conditions under compression loading was also studied. The microstructural observations on the as-cast and heat-treated steels with chromium additions revealed the stability of austenite phase in the as-cast state deformation with precipitation of carbides and carbonitrides on the grain boundaries. These precipitates increase by increasing true strain and chromium content.
2² factorial design was used to investigate the contribution effect of chromium additions and true strain on hardness of austentic manganese steel as cast and after heat treatment. The contribution of both chromium additions up to 3.16%, true strain rate up to 0.4, and the interaction combination effect of them were determined of cast and heat treated austenitic manganese steel. The regression models were built up to identify the hardness as function in chromium additions and true strain rate of both cast and heat treated austenitic manganese steel.